Arduino Ethernet mit PoE Modul

65,33 EUR

incl. 19 % USt zzgl. Versandkosten

Gewicht: 0.0500 kg

Hersteller: Arduino

Lagerbestand: 0

Nicht auf Lager.

Nicht auf Lager.

Art.Nr.: A000074
     

Produktbeschreibung

Das Arduino Ethernet vereint ein Arduino UNO mit einem Ethernet Shield auf einem Board. Das Boardist mit dem PoE Modul ausgestattet und ermöglcht den Betrieb direkt an einem PoE Switch. Das Board kann über einen 6-poligen FTDI Adapter oder über den Arduino USB2Seriell Adapter geflasht werden.

The Arduino Ethernet is a microcontroller board based on the Arduino Uno, and incorporating a WizNet W5100 TCP/IP Embedded Ethernet Controller. It can be programmed like an Uno via a six-pin FTDI -style serial connector. The Arduino USB 2 Serial adapter or any FTDI-style USB-to-serial connector can be used to program it.

A power-over-Ethernet (PoE) module is soldered to the board to provide power from a conventional twisted pair Category 5 Ethernet cable. It is IEEE802.3af compliant, and works with all compliant PoE injectors currently available.


Summary

MicrocontrollerATmega328
Operating Voltage5V
Input Voltage (recommended)7-12V
Input Voltage (limits)6-20V
Digital I/O Pins14 (of which 4 provide PWM output)
  • Arduino Pins reserved
    • 10 to 13 used for SPI
    • 4 used for SD card
    • 2 W5100 interrupt (when bridged)
Analog Input Pins6
DC Current per I/O Pin40 mA
DC Current for 3.3V Pin50 mA
Flash Memory32 KB (ATmega328) of which 0.5 KB used by bootloader
SRAM2 KB (ATmega328)
EEPROM1 KB (ATmega328)
Clock Speed16 MHz
W5100 TCP/IP Embedded Ethernet Controller
Power Over Ethernet ready Magnetic Jack
Micro SD card, with active voltage translators

Schematic & Reference Design

EAGLE files: arduino-ethernet-reference-design.zip

Schematic: arduino-ethernet-schematic.pdf

Power

The board can also be powered via an external power supply, an optional Power over Ethernet (PoE) module, or by using a FTDI cable/USB Serial connector.

External power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

  • VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
  • 5V. The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
  • 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
  • GND. Ground pins.

The optional PoE module is designed to extract power from a conventional twisted pair Category 5 Ethernet cable:

  • IEEE802.3af compliant
  • Low output ripple and noise (100mVpp)
  • Input voltage range 36V to 57V
  • Overload and short-circuit protection
  • 9V Output
  • High efficiency DC/DC converter: typ 75% @ 50% load
  • 1500V isolation (input to output)

NB: the Power over Ethernet module is proprietary hardware not made by Arduino, it is a third party accessory. For more information, see the datasheet

When using the power adapter, power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

Memory

The ATmega328 has 32 KB (with 0.5 KB used for the bootloader). It also has 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Input and Output

Each of the 14 digital pins on the Ethernet board can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data.
  • External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, and 10. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the SPI library.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

The Ethernet board has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and the analogReference() function. Additionally, some pins have specialized functionality:

  • TWI: A4 (SDA) and A5 (SCL). Support TWI communication using the Wire library.

There are a couple of other pins on the board:

  • AREF. Reference voltage for the analog inputs. Used with analogReference().
  • Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

See also the mapping between Arduino pins and ATmega328 ports.

Communication

The Arduino Ethernet has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers.

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also supports TWI and SPI communication. The Arduino software includes a Wire library to simplify use of the TWI bus; see the documentation for details. For SPI communication, use the SPI library.

The board also can connect to a wired network via ethernet. When connecting to a network, you will need to provide an IP address and a MAC address. The Ethernet Library is fully supported.

The onboard microSD card reader is accessible through the SD Library. When working with this library, SS is on Pin 4.

Programming

It is possible to program the Arduino Ethernet board in two ways: through the 6 pin serial programming header, or with an external ISP programmer.

The 6-pin serial programming header is compatible with FTDI USB cables and the Sparkfun and Adafruit FTDI-style basic USB-to-serial breakout boards including the Arduino USB-Serial connector. It features support for automatic reset, allowing sketches to be uploaded without pressing the reset button on the board. When plugged into a FTDI-style USB adapter, the Arduino Ethernet is powered off the adapter.

You can also program the Ethernet board with an external programmer like an AVRISP mkII or USBTinyISP. To set up your environment for burning a sketch with a programmer, follow these instructions. This will delete the serial bootloader, however.

All the Ethernet example sketches work as they do with the Ethernet shield. Make sure to change the network settings for your network.

Physical Characteristics

The maximum length and width of the Ethernet PCB are 2.7 and 2.1 inches respectively, with the RJ45 connector and power jack extending beyond the former dimension. Four screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

Setup

With this board you need to change the boards.txt file in your Arduino directory (find it in: Arduino-00xx->hardware->arduino) with this updated version that include also the Mega ADK board: boards.txt



Kunden kauften auch

RF Link Empfänger - 434MHz

RF Link Empfänger - 434MHz

4,37 EUR

Thermoelemt Typ-K (Ni-Cr)

Thermoelemt Typ-K (Ni-Cr)

12,07 EUR

TEK-BERRY Gehäuse - schwarz v1.2

TEK-BERRY Gehäuse - schwarz v1.2

5,00 EUR

Panasonic (Sanyo) eneloop Mignon AA 2000 mAh Akku NiMH - HR-3UTGB

Panasonic (Sanyo) eneloop Mignon AA 2000 mAh Akku NiMH - HR-3UTGB

2,10 EUR - 1,90 EUR

Arduino Mega ADK TinkerKit

Arduino Mega ADK TinkerKit

261,80 EUR